Determination of Ploidy in Plants Based on Impedance Flow Cytometry

Author: Dr. Grit Schade

Polyploidy plays an important role in plant breeding. It is often apparent by a distinct morphology, e.g. increased size, larger cells and bigger pollen. Therefore, pollen size is often taken as a parameter to evaluate the ploidy of plants.

Amphasys provides a convenient and precise technology to characterize pollen grains in terms of size and viability and thus ploidy and fertility. The sample preparation and the measurement are straight-forward and fast.

Potato – Solanum tuberosum

Cyclamen persicum

2n Genotype

Plot of another 4n genotype with reduced pollen or incomplete pollen development and overlay with the 2n plant; critical points are marked for the tetraploid plant.

Wheat – *Triticum aestivum*

Standard 2D	
plot of a 2n	
genotype	

Genotype

Y-Axis projections of different 2n genotypes

Standard 2D	Y-Axis
plot of a 4n	projections of
genotype	different 4n
	genotypes

Statistical analysis of the same 24 pollen samples from different diploid (2n) and tetraploid (4n) watermelon genotypes.

Bars: Median and range.

Experimental set-up for ploidy measurement:

- prepare the measurement well
- use chip with optimal size compared to pollen
- use right buffer
- optimize the settings
- use pollen of same development stage, ideally mature

Comparison Amplitude at 2MHz

fresh viable pollen

compare with known standards of 1n, 2n etc. to classify unknown samples

Data analysis supported by AmphaSoft

- visual approach
- statistical approach

Amphasys AG, Technopark Lucerne, Platz 4, 6039 Root D4, Switzerland | www.amphasys.com