

... Reinventing Single Cell Analysis

Expert Session Amphacademy 2017

Grit Schade, Silvan Kaufmann

Amphasys AG, Technopark Lucerne, 6039 Root D4, Switzerland

Contents

- From Sample to Result
- Software Features
- Design of Experiment
- Tips and Tricks
- Setup of an Autosampler Measurement

... Reinventing Single Cell Analysis

From Sample to Result

Amphasys AG, Technopark Lucerne, 6039 Root D4, Switzerland

Impedance Flow Cytometry (IFC)

Electrical **Impedance** is opposition to a current in a circuit when an alternating voltage is applied

The cells are suspended in a conductive **Fluid**

Impedance Flow Cytometry

Electrical properties of cells ______ are **Measured**

From Sample to Result

Microfluidic and Microelectronic Technology

Impedance Phase

IFC Data Analysis

What do we see in a scatterplot?

... Reinventing Single Cell Analysis

Software Features

Amphasys AG, Technopark Lucerne, 6039 Root D4, Switzerland

Data Analysis – Visualization

- Moving: Left-click and drag
- Zoom: Move mouse wheel in the plot
- Define axis limits
- Changing the dot size
 - Press *Ctrl* and move the mouse wheel in the plot

- Changing the density plot coloring
 - Press Alt and move the mouse wheel in the plot

Data Analysis – Gating

- Horizontal line gate
- Vertical line gate
- Cross gate
- Polygon gate
 - Hide cells
 - Advanced statistics

What is the meaning of the gate labels?

- R: Name of the gate

R: 31438 | 91.18%

- 31438: Number of points inside the gate
- 91.18 %: Percentage of points in the gate, with respect to all points in the plot

Data Analysis – Gating

 Gating is a process used to quantify different subpopulations of cells. In the case of viability analysis, gates are used to quantify viable and dead cells, from which the percentage of viable cells is calculated.

 $V(\%) = \frac{\% viable}{\% viable + \% nonviable} \times 100 \%$

- The most important parameter for the viability analysis is the impedance phase (x-axis). Viable cells appear at higher phase angles than dead cells.
- For many samples, a simple vertical line gate is already sufficient to obtain the viability information.

Data Analysis – Gating with other particles

 Depending on the type of sample, other types of particles than pollen cells can be present. In that case, polygon or cross gates are used to correctly quantify viable and nonviable cells.

Hide Cells (coming soon)

- Hide Cells to exclude debris from the analysis
- Hide polygon gate content or everything around the polygon
- Apply Hide Cells gate to other measurements as usual

Advanced Gate Statistics (coming soon)

- Am phasys
- Mean, Median, Standard Deviation and Mode of amplitudes and phases of all points in a polygon gate

Pollen ploidy based on pollen size differences

Plot Overlay (coming soon)

- Visualize processes or differences (e.g. Maturation, heat treatment, ploidy)
- Use the same axis settings for all plots to overlay, then highlight the desired measurements > right-click in plot > Overlay

Data Export (coming soon)

- For advanced data analysis with custom algorithms
- Phase, amplitude and corresponding gate of each particle in .csv format
- Export of all data
 - Right-click on Measurements > Export All Cells
- Export of single-measurement data
 - Right-click on measurement > Export Cells

Export of all data

P Amph	aSoft 2.0) - AS2	Exa	mple \	Vorksp	ace
Workspac	e Too	ls Wi	ndo	w He	elp	
Ð 🗅	Ĵ	+	—	I		
Navigatio	n		^	Mea	sureme	nt
Instr	ument C	ontrol		Set	tings—	_
✓ Mea	suremer			nd		ь-I
> 5	5_1 - Kiw		xpa	nu		
> 9	5_2 - Kiw	0	olla	pse		
> 9	5_3 - oil	E	хро	rt All C	ells	yea
> 9	5_4 - oil	palm i				-
> 9	5_5 - oil	palm r				

Export of single measurement data

> S_30 - insect ce	Cells
> S_31 - insect ce	ul
> S_32 - insect ce	min:sec 0
S_33 - insect ce	
> S_34 - ye 0 -	
> S_35 - ye Export	Cells
> S_36 - yeast 60	Freq
> S_37 - yeast 90	
	Phace 14
> S_38 - yeast 12(Phase 14
 S_38 - yeast 12(S_39 - yeast 18(Phase 14 Ampl -0
 S_38 - yeast 120 S_39 - yeast 180 S_40 - yeast 300 	Phase 14 Ampl -0 Shift

В С А 247.485 0.059732 Viable 2 1 2 235.866 0.078129 Viable 2 3 221.102 0.07715 Viable 1 4 210.053 0.031917 Viable 1 5 206.661 0.024568 Viable 1 6 238.14 0.053583 Viable 2 7 189.229 0.071557 Dead 8 231.657 0.022509 Viable 2 9 243.51 0.030326 Viable 2 10 223.015 0.049962 Viable 2 11 253 639 0 050914 Viable 2

Phase / Amplitude / Gate Data

Example of offline data analysis

Yeast cultures, 120 min time lapse

Reporting and Plot Export

- .csv report
- .html report

Select which measurements you want in the report!

Plot export

Measurements	+ -	1 Settings +/-
		Set ? ×
Done 1 1	Report	 ☐ Trig Hyst ☑ Flush ☑ Note ☑ Done ☑ Report
1	0	< > > ×
1	0	OK Cancel

	SW Version: 2.0. Workspace: C.7. Date/Time: Men Measurements: Sett	Amphas 3.0 Jsers/Silvan/Der twoch 08-Mär-2 ings Results Ga	soft ktop/A 017 14: ting Sta	2.0 S2 Ex. 41 tistics) Me ample Wa <u>Gating V</u>	asur orkspace	em	ent F	Repoi	rt									
d	Sample Name	Buffer Id	Chip Id	Freq [0.1-	Sett 1 30MHz]	ings Freq 2 [0.1-303	(Hz)	Stop Cond Cells [0-10M]	Stop Cond ul [0-10K]	Stop Cond min [0-99]	Stop Cond sec [0-59]	Pump Speed [rpm]	Note	Done	Repo	rt			
_1	Kiwi sample 1	AF6		2		12		0	0	0	0	80		1	1	-			
_2	Kiwi sample 2	AF6	4	A	в	с	D	E	F		G	н	10		1	к	L	M	N
3	oil palm viable	AF6	1 Amp	haSof	Measurer	nent Repor	t												
4	oil palm inactivated	AF6	3 Wor	kspace	: 2.1.1.0 :: C:/Users	/Silvan/De	sktop//	AS2 Example	e Workspa	ce									
5	oil palm mixed	AF6	4 Date	/Time:	Sonntag	0-Aug-201	7 15:1	7											
6	sunflower dehydrated	AF6	5 Setti	ings															
-	Sunnower denydrated	ATC	7 Id		Sample Na	Buffer Id	Chip I	d Freq 1	[0.1 Freq]	[0.1 Sto	p Cond S	top Cond	Stop Cor	nd Stop	Cond P	ump Spe	Note	Done	Report
-'	sunflower 45 min rehydrated	Aro	8 S_1 9 5 2		Kiwi samp Kiwi samp	AF6			2	12	0	0		0	0	80			1 1
_8	sunflower 2.5 min suspended in buffe	er AF6	10 S_3		oil palm vi	AF6			2	24	0	0		0	0	80			1 1
_9	sunflower 30 min suspended in buffer	r AF6	11 S_4		oil palm in oil palm m	AF6			2	24	0	0		0	0	80			1 1
_10	sweet pepper sample 1	AF6	13 5_6		sunflower	AF6			0.5	12	0	.0		0	0	80			1 1
			14 S_7		sunflower	AF6			0.5	12	0	0		0	0	80			1 1
			15 5_8 16 5 9		sunflower	AF6 AF6			0.5	12	0	0		0	0	80			1 1
			17 5_10	,	sweet pep	AF6			0.5	12	0	0		0	0	60			1 1
			18 5_11		sweet pep	AF6			0.5	12	0	0		0	0	60			1 1
			19 5_12 20 5_13	2	sweet pep	AF6			0.5	12	0								
			21 5_14	1	sweet pep	AF6			2	12	0				n s	~	/	-	-
			22 8_15	5	sweet pep	AF6			2	12	0	0.111	1091-73	34			11.23	1.8.1	A: 40716 - 16
			23 S_16	2	sweet pep	AF6 AF6			2	12	0						1	Start.	1 x -
			25 5_18	8	wheat dev	AF6			2	12	0	0.80	-				40.0		
			26 5_15	9	wheat dev	AF6			2	12	0					11 and	1. 2.	1 to a first	
			28 S 21	1	wheat dev wheat dev	AF6			2	12	0					She	is it	a fere	
												0.080	ř.			Au	15 1		2.4
												240				18	1	Starte.	
												8 0 0003	-	- 1		200	12-12	100	4
												1 day					115	1000	1. A.
												1		1			E.C.		10.24
											- 1	104				2.5			C.S.
											- 1			12			13		Sec. 1
												n.401	-	1			, j		
																10000	10700000	- Sauge	

Manual Instrument Controls

Advanced Tab

Triggering Source and Direction

Real Part Impedance Signal (X)
 Imaginary Part Impedance Signal (Y)

Signal properties depend on frequency, chip type and quality, electronic gain, buffer and cell type!

... Reinventing Single Cell Analysis

Design of Experiment

Amphasys AG, Technopark Lucerne, 6039 Root D4, Switzerland

Design of Experiments

- What cells I want to measure?
 - ► Cell type determines Buffer
 - ► Cell size determines
 - ► Filter size
 - Measurement Chip
 - Instrument Settings
 - Always consult the pollen list!
- What parameter do I want to determine?
 - ► Viability, concentration, ploidy, developmental stages...Design your experiment!
 - Prevent sampling bias
 - Prevent measurement and data analysis bias

Preventing Experimental Bias

- Do not compare apples with oranges
 - ► Variability within a plant, flower, tassel...
 - Variability during the day
 - Different developmental stages
 - Environmental factors
- Know the stability of the cells in the buffer
- Properly rehydrate / equilibrate after freeze-storage
- Work with standardized protocols
 - Pollen source
 - Buffer
 - Chip Type
 - Settings
 - ► Filter Size
- Account for debris in the analysis of data
 - Mathematically
 - ► Hide Cells feature

Concentration – Poisson Distribution

Model does not take particle sedimentation into account

... Reinventing Single Cell Analysis

Tips and Tricks

Amphasys AG, Technopark Lucerne, 6039 Root D4, Switzerland

Chip Test

- A Chip Test is a procedure to evaluate the quality of a measurement chip
- Perform Chip Tests on a regular basis to ensure a good quality of the measurements
- Launch a Chip Test in the Menu under Tools > Chip Test. The Chip Test requires 2 ml AmphaCalib buffer.
- The Info button reveals the number of measurements performed with a Chip

Tips and Tricks

Worklist

AmphaSoft 2.0

Navigation Instrument Control

✓ Measurements

S_1 - Sample 1

Workspace Tools Window Help

Worklist

Id

S_1

 Always confirm new configurations (Sample name, Chip name, Buffer ID, Stop Conditions...) with *Enter*

Freq 2

[0.1-30MHz]

12

Done

0

Freq 1 [0.1-30MHz]

O-ring at the Sample Holder

Sample Name

Sample 1

Buffer Id

AF6

Chip Id

Use a bit of grease if it is hard to attach tubes

Batteries

Fully charge once per month to ensure durability

Tips and Tricks

Sample Preparation

- Use a standardized sampling method
- Use a filter with a mesh size of 1.5 2 times the diameter of the cells
- Try to minimize the amount of debris
 - ► If pollen is extracted from anthers, squeeze the anthers gently with a pistil
- Hydrophobic pollen: Add 0.05 % Tween20 (detergent)
- Seal sample tube with Parafilm and quickly invert before measuring
 - Distributes sedimented particles
 - Reduces the chance of clogging
 - Improves concentration accuracy

Measurement

Use a chip with a channel of about 2 – 3 times the size of the pollen

Inertial Focusing – Data Interpretation

a) FLS b) High a.r. Square channel FLW b Low a.r.

Figure 1: Particle inertial focusing in flow through straight channels. (a) The shear induced lift force (F_{LS}) and a wall induced lift force (F_{LW}) acting on a particle flowing in a microchannel. (b) Illustration of the cross-sectional equilibrium positions of particles flowing through different channel geometries.

... Reinventing Single Cell Analysis

Autosampler Measurements

Amphasys AG, Technopark Lucerne, 6039 Root D4, Switzerland

Your Contacts

Grit Schade, PhD

Senior Application Manager Tel: +41 41 541 91 22 grit.schade@amphasys.com

Silvan Kaufmann Application Scientist, MSc Biomedical Engineering ETH Tel: +41 41 541 91 22 <u>silvan.kaufmann@amphasys.com</u>

Support@amphasys.com

Amphasys AG Technopark Lucerne Platz 4 CH-6039 Root D4 Tel: +41 41 541 91 20 www.amphasys.com